PAGFL - Joint Estimation of Latent Groups and Group-Specific Coefficients in Panel Data Models
Latent group structures are a common challenge in panel data analysis. Disregarding group-level heterogeneity can introduce bias. Conversely, estimating individual coefficients for each cross-sectional unit is inefficient and may lead to high uncertainty. This package addresses the issue of unobservable group structures by implementing the pairwise adaptive group fused Lasso (PAGFL) by Mehrabani (2023) <doi:10.1016/j.jeconom.2022.12.002>. PAGFL identifies latent group structures and group-specific coefficients in a single step. On top of that, we extend the PAGFL to time-varying coefficient functions.
Last updated 13 days ago
classificationpanel-data-modeltime-varying-coefficientsopenblascppopenmp
4.43 score 2 stars 3 scripts 675 downloadsBTtest - Estimate the Number of Factors in Large Nonstationary Datasets
Large panel data sets are often subject to common trends. However, it can be difficult to determine the exact number of these common factors and analyse their properties. The package implements the Barigozzi and Trapani (2022) <doi:10.1080/07350015.2021.1901719> test, which not only provides an efficient way of estimating the number of common factors in large nonstationary panel data sets, but also gives further insights on factor classes. The routine identifies the existence of (i) a factor subject to a linear trend, (ii) the number of zero-mean I(1) and (iii) zero-mean I(0) factors. Furthermore, the package includes the Integrated Panel Criteria by Bai (2004) <doi:10.1016/j.jeconom.2003.10.022> that provide a complementary measure for the number of factors.
Last updated 7 days ago
common-trendsnonstationary-panelsopenblascppopenmp
3.95 score 3 stars 4 scripts 266 downloads